Preventing Salmonella Colonisation of Chickens: Electrostatic Application of Electrolysed Oxidative Acidic Water
Electrolysed oxidative (EO) water applied using electro-static spraying is an effective means of eliminating pathogenic and indicator populations of bacteria from hatching eggs, according to Dr Scott Russell of the University of Georgia's Department of Poultry Science. Studies he reports demonstrate that the use of EO water in combination with electrostatic spraying may provide a practical and inexpensive way for the industry to significantly lower the number of birds that arrive at the processing plant contaminated with Salmonella.Introduction
Salmonella
spp. may be found in the nest box of
breeder chickens, cold egg-storage rooms at the
farm, on the hatchery truck or in the hatchery
environment. These bacteria may then be spread
to fertilised hatching eggs on the shell or, in some
cases, may penetrate the shell and reside just beneath the surface of the eggshell.
Research has demonstrated that contamination of
raw poultry products with
Salmonella
spp. may be
attributable to cross-contamination in the hatchery
from
Salmonella
infected eggs or surfaces to uninfected baby chicks during the hatching process. Cox et
al. (references 6 and 7 below) reported that broiler and breeder hatcheries were highly contaminated with
Salmonella
spp.
Within the broiler hatchery, 71 per cent of eggshell
fragments, 80 per cent of chick conveyor belts swabs,
and 74 per cent of pad samples placed under newly
hatched chicks contained
Salmonella spp.
Cason et al. reported that, although fertile hatching eggs were contaminated with high levels of
Salmonella typhimurium, they were still able to hatch.
The authors stated that paratyphoid salmonellae
do not cause adverse health affects to the developing and hatching chick. During the hatching process,
Salmonella
spp. are readily spread throughout
the hatching cabinet due to rapid air movement by
circulation fans. When eggs were inoculated with a
marker strain of
Salmonella
during hatching, greater
than 80 per cent of the chicks in the trays above and
below the inoculated eggs were contaminated. In
an earlier study, Cason et al. demonstrated that
salmonellae on the exterior of eggs or in eggshell
membranes could be transmitted to baby chicks during pipping.
Salmonella
may persist in hatchery environments for
long periods of time. When chick fluff contaminated
with
Salmonella
was held for four years at room temperature, up to 1,000,000
Salmonella
cells per gram could
be recovered from these samples.
Researchers have demonstrated a link between
cross-contamination in the hatchery and contaminated carcasses during processing. Goren et al.
isolated salmonellae from three different commercial hatcheries in Europe and reported that the same
serotypes found in the hatcheries could be found
on processed broiler chicken carcass skin. Proper
disinfection of the hatchery environment and fertile
hatching eggs, therefore, is essential for reducing
Salmonella
on ready-to-cook carcasses.
Numerous studies have been conducted to evaluate
sanitizing agents for disinfecting eggshell surfaces
and membranes. Bailey et al. reported that 2.5
per cent hydrogen peroxide (H2O2), administered using 100 or 500mL per hour,
reduced
Salmonella typhimurium-positive eggshells
by 55 per cent and the number of positive chicks by
53 per cent. Hydrogen peroxide reduced total aerobic bacterial
counts (APC) in air in hatching egg incubators from
3.6 colony-forming units (CFU) per litre for water fogging to 0.35CFU per litre when the incubator was fogged
with three per cent hydrogen peroxide. Sheldon and Brake (14)
demonstrated that five per cent hydrogen peroxide reduced APC on
hatching eggs from 3.98 CFU per egg for water sprayed
eggs to 0.99 CFU per egg for treated eggs. Bailey et al.
reported that ozone at 0.2 to 0.4ppm reduced
Salmonella typhimurium-positive eggshells by 10 per cent
and the number of positive chicks by 26.7 per cent. In
another study, ozone at 3.03 per cent by weight was
able to reduce APC on broiler hatching eggs by 2.57
log10 cfu. Brake and Sheldon observed that
a quaternary ammonium sanitiser at 3.0 per cent reduced APC on broiler hatching eggs by 99.9 per cent
within 30 minutes of application.
The methods used
to apply sanitisers in these studies varied from gaseous exposure to fogging and dipping. Method of
application may have a dramatic impact on efficacy
of the sanitisers used.
Law developed an electrostatic spray-charging
system using air atomisation which achieved a seven-fold increase in spray deposition over conventional
application methods.
In later studies, a 1.6- to 24-fold increase in deposition was reported. Herzog et al. observed that insect control on cotton plants was equal to or better than conventional spray application using only one-half the amount of insecticide. Thus, the electrostatic spraying method may be an appropriate means of applying sanitisers in the hatchery environment — by distributing the sanitiser more effectively over the surface of eggs and equipment and by reducing the amount of sanitiser needed to eliminate pathogenic bacteria.
If EO water applied using ESS can significantly reduce Salmonella on the surface of fertile eggs, it is believed that this method may result in significant reductions in Salmonella contamination of raw poultry products. Although these studies collectively point to the fact that reduction of Salmonella in the hatchery should result in reductions on final product, this relationship has never been proven scientifically. Moreover, if a safe, non-toxic sanitiser could be proven effective in the hatchery, its use would be a welcomed replacement for formaldehyde, since formaldehyde is objectionable to both chicks and workers.
As is demonstrated in the figures, the sanitiser is sprayed as a very fine fog and, in a short period of time, completely disappears. This fog completely covers every surface within the hatching cabinet, including eggs. Complete coverage has been demonstrated using fluorescent dye sprayed onto surfaces. After spraying, the area can be evaluated using a black light, and even the most difficult to reach spaces are completely covered.
Matching the Sanitiser to the Electrostatic Spraying System
A major consideration when using electrostatic
spraying is the type of sanitiser being used. Applying an electrical charge or atomisation has the
potential to completely eliminate the killing power
of some sanitisers. When using electrostatic spraying, it is best to evaluate the sanitiser to be used in
light of this limitation.
As mentioned previously, currently used sanitisers
are objectionable for various reasons. Formaldehyde is difficult to work with and presents a worker safety hazard. Formaldehyde gas burns people's
lungs and eyes when they are exposed to it, and
many have compared the experience to that of being
exposed to tear-gas. Glutaraldehyde is also unpleasant for workers. Hydrogen peroxide, while effective,
is corrosive to equipment and is irritating to the
lungs. It would seem that exposing baby chicks on
day of hatch to these chemicals would be disadvantageous if other chemicals could be used that would
be as effective at eliminating pathogenic bacteria.
Mixed oxidants
A method has been developed for splitting salt water into streams of mixed oxidants. One such system
(EAU Limited) is displayed in Figure 5. By mixing
a 20 per cent solution of salt water and placing the
water in the container inside the machine, the water
is then taken up by the instrument, passed over
an electrode, and various oxidising chemicals are
generated. The water comes out of the machine as
two different mixed oxidant streams. One stream is
acidic (pH 2.1) and the other is alkaline (pH 10.8).
The acidic portion of this water has been shown to
be effective for killing various pathogenic bacteria of
concern to the poultry industry in an experimental
setting (K.S. Venkitanarayanan et al., 1999a, 1999b).
Some of the
possible mixed oxidants produced by electrolysing
the salt water are hydrogen peroxide, chloride, HOCl, oxone (O3) and chlorine dioxide (ClO2).
All of these compounds have been proven to be
effective sanitisers, but the unique aspect of this methodology is that these compounds are produced
in very low concentrations (three to 80ppm, depending
on the system).
Collectively, these chemicals exhibit
bacteriocidal activity while the water remains safe
enough to drink and is not harmful to equipment.
The advantage of using electrolysed water is that
it costs almost nothing to produce, is safe enough
to drink and breathe (when atomised), is effective against pathogenic bacteria, and will not corrode
equipment.
The purpose of the studies described in this publication was to determine if electrostatic application
(ESS) of a nontoxic, novel sanitiser would be effective in eliminating
Salmonella
spp. from fertile hatching eggs, and to evaluate if this reduction carries
through to a significant reduction in colonisation of
chickens during the grow-out process.
The Studies
Materials and methods
Study I
Pathogenic Bacterial Isolates
Salmonella typhimurium,
Listeria monocytogenes,
Staphylococcus aureus and
Escherichia coli
were obtained
from the United States Department of Agriculture,
Agricultural Research Service’s (USDA-ARS) Poultry Microbiological Safety Unit laboratory. These
isolates were originally collected from commercial
broiler carcasses. Each isolate was assayed for Gram
reaction, cytochrome oxidase activity and production of catalase, and was identified using either the
Vitek, Biolog or Micro-ID rapid identification methods.
EO Water Preparation
A solution of EO water was prepared by electrolysis
of a 20 per cent saline solution made with tap water.
The final pH and oxidation-reduction potential of
this solution were 2.1 and 1,150, respectively. Due to
electrolysis of the saline solution, small concentrations of antimicrobial substances were produced including chlorine ions (8ppm free chlorine), chlorine dioxide, ozone and hydrogen peroxide (See Figure
5). It is believed that the combination of very low
concentrations of these compounds in an acidic environment is the mechanism of action for EO water.
Egg Preparation
Eggs were collected from layer chickens housed at
The University of Georgia Poultry Research Center. After collection, the eggs were washed using a
commercially available chlorine based sanitiser and
allowed to dry. Each egg was then rinsed thoroughly
three times using sterile de-ionised water to remove
any residual sanitiser that may have remained from
the washing process.
Egg Inoculation
An inoculation solution was prepared by placing 0.1mL of an actively multiplying pure bacterial culture
(incubated for 24 hours in brain heart infusion broth5 at 35°C) into 200mL of sterile one per cent peptone
broth. The bacterial cultures used were
Salmonella
typhimurium,
Staphylococcus aureus, Listeria monocytogenes
and
Escherichia coli. Eggs were individually
dipped into the inoculum and allowed to dry under
a laminar flow hood for one hour. This procedure provided time for the bacteria to attach to the surface of
the egg.
Electrostatic Spraying of Eggs
Each egg was placed into a clean egg flat and positioned in an electrostatic spraying chamber. Tap
water (two repetitions) or EO water (four repetitions) was
sprayed onto the eggs using two electrostatic spray
nozzles for 15 seconds each hour for 24 hours (See Figures 6 and
7). After treatment, the eggs were allowed to dry under a laminar flow hood for one hour. In addition, two eggs
were dipped in each bacterial isolate, allowed to dry
and stored for 24 hours in an enclosed chamber with 96
per cent humidity as a control.
Neutralisation of sanitiser
Each control and treated egg was cracked using a
sterile blade and the contents were removed. Egg-shells and membranes were placed into 25mL of
sterile one per cent peptone broth containing three per cent
Tween 80, 0.3 per cent lecithin and 0.1 per cent histidine to neutralise the sanitisers.
Microbiological Evaluation
One millilitre of this mixture was placed into 9mL
of sterile BHI, which acts as a growth medium for
conducting impedance or conductance assays, and
vortexed. One mL of this mixture was placed into a
Bactometer module well in duplicate. Samples were
monitored using the Bactometer Microbial Monitoring System M128. All of the bacterial isolates tested
were monitored at 35°C. All samples were
monitored for 48 hours using impedance except for E.coli, which was monitored using conductance.
Statistical Analysis
The experimental design was a 4×4×2 of replication, bacterial type and treatment (EO water
and controls). All microbiological analyses were
conducted in duplicate. Data were analysed after
averaging the duplicates. Results were analyzed using the General Linear Models (GLM) procedure of
SAS software (SAS Institute, 1994). Treatment means
were separated using Fisher's Least Significant Difference option of SAS software (SAS Institute, 1994).
All values reported as significant were analysed at
the P=0.05 level.
Study II
Pathogenic Bacterial Isolates
Salmonella typhimurium
was obtained from the
United States Department of Agriculture, Agricultural Research Service's (USDA-ARS) Poultry Microbiological Safety Unit laboratory. These isolates were
originally collected from commercial broiler carcasses. Each isolate was assayed for Gram reaction and
cytochrome oxidase activity, and identified using the
Vitek rapid identification method.
EO Water Preparation
A solution of EO water was prepared by electrolysis
of a 20 per cent saline solution made with tap water.
The final pH and oxidation-reduction potential of
this solution were 2.1 and 1,150, respectively. Due to
electrolysis of the saline solution, small concentrations of antimicrobial substances were produced including chlorine ions (8ppm free chlorine), chlorine
dioxide, ozone and hydrogen peroxide. It is believed
that the combination of very low concentrations of
these compounds in an acidic environment is the
mechanism of action for EO water.
Industrial Hatchability Study
Thirty thousand eggs were placed into clean egg
flats and positioned in two separate commercial
hatchers (15,000 each) at a commercial primary
broiler breeder facility. Tap water in one hatching
cabinet and EO water in the other hatching cabinet
were sprayed onto the eggs using two electrostatic
spray nozzles. The timers were set to deliver EO
water to the eggs for five minutes immediately upon
placement and then two minutes every six hours for
the first day in the hatching cabinet. On the second
day, the nozzles delivered EO water for two minutes
every four hours. On the final day of hatch, the nozzles
produced EO water for two minutes every two hours. These nozzles were designed to spray a volume of
280mL of liquid per minute. After hatching, the
percent hatchability was determined for each hatching cabinet.
Egg Preparation and Inoculation
Fertile hatching eggs were collected from broiler
breeder chickens housed at The University of Georgia, Poultry Research Center and were incubated
for 18 days in setters. An inoculation solution was
prepared by placing 0.1mL of an actively multiplying culture of
Salmonella typhimurium (incubated 24 hours in brain heart infusion broth at 35°C) into
200mL of sterile one per cent peptone broth. Eggs were
individually dipped into the inoculum and allowed
to dry for one hour. This procedure provided time for the
bacteria to attach to the surface of the egg.
Electrostatic Spraying of Eggs
In the second portion of Study II conducted at the
UGA Poultry Research Center, 40 eggs were placed
into clean egg flats and positioned in two separate
commercial hatchers in two separate repetitions. Tap
water in one hatching cabinet and EO water in the
other hatching cabinet were sprayed onto the eggs
using two electrostatic spray nozzles. The timers
were set to deliver EO water to the eggs for five minutes immediately upon placement and then two minutes every six hours for the first day in the hatching
cabinet. On the second day, the nozzles delivered
EO water for two minutes every four hours. On the final
day of hatch, the nozzles produced EO water for two minutes every two hours. These nozzles were designed
to spray a volume of 280mL of liquid per minute.
After hatching, the percentage hatchability was determined for each hatching cabinet. After hatching, the
percent hatchability was determined for each hatching cabinet.
Grow-out
After hatching, the chicks from each hatcher were
transported separately to different research facilities
that had been thoroughly disinfected. The chicks
were reared to four weeks of age being fed and watered
ad libitum. After four 4 weeks, the birds were euthanised
using carbon dioxide gas. The lower digestive tract (including
the ileal junction, caeca, rectum and cloacae) were
removed from each bird, placed into a sterile plastic bag, encoded and transported to Woodsen-Tenant
Laboratories for evaluation for the presence (colonisation) of
Salmonella.
Microbiological Evaluation
The lower digestive tracts of each bird were evaluated using the following method:
- Intestines and caeca were homogenised in 250mL of universal preenrichment broth and incubated for 24 hours at 35°C.
- A 1-mL aliquot was transferred to 10mL selenite cysteine (SC) broth and a 1mL aliquot was transferred to 10mL tetrathionate (TT) broth. The SC broth tubes were incubated at 35°C for eight hours and the TT broth tubes were incubated at 42°C for eight hours in a water bath.
- 1-mL aliquots from SC and TT broth tubes were placed separately into two tubes containing M- broth and incubated at 35°C for six hours in a water-bath.
- Tecra ELISA visual immunoassays were used to evaluate the tubes for the presence of Salmonella
- Presumptive positives were streaked onto xylose lysine desoxycholate (XLD), Hektoen enteric (HE), bismuth sulfate (BS), and xylose lysine tergitol (XLT4) agars and incubated at 35°C for 24 hours.
- Colonies were streaked onto triple sugar iron (TSI) and lysine iron agar (LIA) slants and incubated at 35°C for 24 hours.
- Slants exhibiting typical reactions for Salmonella were evaluated using Poly A-I and Vi and Poly a-z for "O" and "H" antigens.
Statistical Analysis
The experimental design for the industrial hatchability study was a 1×2×15,000 of replication,
treatment (tap water or EO water), and egg. The
experimental design for the hatchability study at the
university was a 2×2×80 of replication, treatment
(water or EO water), and egg. The experimental design for the
Salmonella
recovery portion of the study
was a 2×2×40 of replication, treatment and egg.
Results were analyzed using the logistic progression
procedure of SAS software (SAS Institute, 1994). All
values reported as significant were analyzed at the
P=0.05 level.
Results and Discussion
Study I
Bacterial proliferation requires the availability of
nutrients such as carbohydrates, proteins, or lipids.
As bacteria break down and utilise these nutrients,
they release charged byproducts such as lactic acid
and acetic acid (Cady, 1974). As charged metabolites
accumulate, the conductance and capacitance of the
growth medium increases, and impedance decreases. A significant and dramatic shift in the electrical
component of the medium occurs when bacterial
populations reach a threshold of 106 to 107 cells per mL
(Firstenberg-Eden, 1983). The time required for this
shift to occur is called the detection time (DT).
DT is
dependent on the initial concentration of bacteria,
the rate at which bacteria in the sample reproduce,
the temperature and the test medium used (Richards et al., 1978; Silley and Forsythe, 1996). Using
electrical methods, highly contaminated samples
would be detected first. For example, a sample that
initially contains 105 organisms would require fewer cell divisions to reach the 106 detection threshold,
than a sample that initially contains only 101 bacteria. Thus, DT is inversely proportional to the initial
bacterial level in the sample. If impedance or conductance detection times are significantly increased
when bacterial populations are exposed to a chemical sanitiser, then the sanitiser had an inhibitory
effect on the proliferation of the bacterium or group
of organisms. In addition, if no detection time is
recorded in 48 hours, then it is assumed that the organism was deactivated or injured beyond repair by the
sanitiser, as it was unable to multiply under optimal
growth conditions.
In this study, significant differences in bacterial
inhibition by EO water were observed between replicates. For each replicate, different concentrations
of bacteria were used and the oxidation/reduction
potential (ORP) of the EO water evolving from the
electrostatic spray nozzle head varied within and
between replicates. Thus, the differences observed
between replicates may be attributed to application of high numbers of bacteria in some instances and
fluctuation in ORP values.
Fluctuation in ORP at
the nozzle head may be attributed to the charge of
the liquid coming out of the nozzle, the air speed of
compressed air carrying the sanitiser and the size
of the liquid droplet coming from the nozzle. None
of these variables are associated with the sanitiser
but are able to be controlled by adjustments to the
electrostatic spray nozzle system, especially if this
system is to be used in an industrial setting.
Colony-forming units (cfu) of bacteria per millilitre
of inoculum exposed to EO water are presented in
Table 1. Please note that, in some cases, very high
concentrations of bacteria were challenged in this
study to determine the effect of the sanitiser on high
numbers of actively growing pathogens and indicator populations of bacteria.
Impedance and conductance detection times
(hours), and log10 cfu estimations for pure cultures
of
Salmonella
typhimurium
(ST),
Staphylococcus aureus
(SA),
Listeria monocytogenes
(LM), and conductance
detection times (hours) for
Escherichia coli
(EC) on
eggs that have been treated with tap water (two replicates) or EO water (four replicates) using electrostatic
spraying, and control eggs that were not treated are
presented in Tables 2 and 3, respectively.
EO water completely eliminated all
ST
on three (20 per cent), seven (46.7 per cent), one (6.7 per cent) and eight (53.3 per cent)
eggs of 15 tested in Reps 1, 2, 3 and 4, respectively.
In all Reps, for the sanitiser to eliminate ST on an
egg completely, a minimum of a 5-log10 reduction
would be required. In Rep 4, when 53.3 per cent of
eggs were negative for ST, 6-log10 ST were killed. In
addition, for eggs that remained positive, the number of ST remaining were significantly reduced by
a minimum of 4-log10 when compared to control
eggs.
EO water was able to eliminate SA on 12 (80 per cent), 11 (73.3 per cent), 12 (80 per cent) and 11 (73.3 per cent) eggs of 15 tested in Reps 1, 2, 3 and 4, respectively (Table 2). In Reps 3 and 4, for the sanitiser to eliminate SA on an egg completely, a minimum of a 6-log10 and a 5-log10 reduction would be required, respectively. In addition, for eggs that remained positive, the number of SA remaining were significantly reduced by a minimum of 3 log10 when compared to control eggs.
a-bNumbers with no common superscripts differ significantly (P<0.05).
1 Pos is the number of eggs that were positive for growth and produced a detection time out of the number evaluated. (DT = time required for bacterial populations to reach 106 cfu per mL; no detection time indicates no bacteria survived.)
2 Avg DT is the average time required for bacteria that survived treatment to multiply to 106 (longer DT = fewer bacteria).
3 Control DT is the average time required for control eggs dipped in each bacterium that were not exposed to sanitiser to multiply to 106.
4 — Samples were not evaluated.
For LM, EO water eliminated
all bacteria on eight (53.3 per cent), 13 (86.7 per cent), 12 (80 per cent) and
14 (93.3 per cent) eggs of 15 tested in Reps 1, 2, 3 and 4,
respectively (Table 2). In Reps 3 and 4, for the EO
water to eliminate LM on an egg completely, a minimum of a 4-log10 reduction would be required. In
addition, for eggs that remained positive, the number of LM remaining were significantly reduced by a
minimum of 1-log10 (Rep 2) or 2.2-log10 (Reps 3 and
4) when compared to control eggs, except in Rep 1.
EO water eliminated all
EC on nine
(60 per cent), 11 (73.3 per cent), 15 (100 per cent) and 11 (73.3 per cent) eggs of
15 tested in Reps 1, 2, 3 and 4, respectively (Table 2).
In all Reps, for the sanitiser to eliminate EC on an
egg completely, a minimum of a 4-log10 reduction
would be required. In Rep 4, when 73.3 per cent of eggs were negative for EC, 6-log10 EC were killed.
In addition, for eggs that remained positive, the
number of EC remaining were significantly (P<0.05)
reduced by a minimum of 2-log10 when compared
to control eggs. In Rep 3, EO water performed especially well by eliminating all EC on all eggs, even
when a concentration of 47,500 cfu/mL were used.
These data are promising in that EO water is non-
toxic and can be consumed as produced. Moreover,
this sanitiser is environmentally friendly and is not
harmful to humans. Because
Salmonella
testing is
part of the USDA Food Safety and Inspection Service (FSIS) Pathogen Reduction Final Rule (USDA-
FSIS, 1996), and
Salmonella
is spread throughout the
hatchery environment, leading to cross-contamination and eventual contamination of the product,
this sanitiser should prove effective as a means of
treating hatching eggs. Currently used hatchery
sanitisers (formaldehyde gas and glutaraldehyde)
are noxious to humans and chicks, and may pose a
serious health risk. Thus, a sanitiser that does not
harm chicks, is inexpensive to produce, and is effective would be a useful tool for the poultry industry.
1 Impedance or conductance detection times (hours) were subjected to analyses using line equations from established calibration curves for each bacterial species and log-10 estimations were generated.
2 Pos is the number of eggs that were positive for growth and produced a detection time out of the number evaluated. (DT = time required for bacterial populations to reach 106 cfu/mL; no detection time indicates no bacteria survived.)
Study II
Results for hatchability of commercial broiler breeder chicks from hatching eggs treated electrostatically with tap water or EO water during hatch are presented in Table 4. Although treatment with EO water seemed to lower hatchability slightly when compared to tap water treated fertile eggs, the hatchery manager indicated that this was expected because he used older fertile eggs for the EO water treated hatching cabinet. This effect was corroborated in the later hatchability study at the University of Georgia.
* Fertile eggs used in this study for the EO water treatment were older and expected hatchability was lower than the normally expected hatch.
Results for hatchability of chicks from fertile hatching eggs obtained at the University of Georgia and
treated electrostatically with tap water or EO water
during hatch are presented in Table 5.
No differences were observed in hatchability between EO
treated or tap water treated eggs at 93 per cent each. These data are very consistent with expected hatch
percentages from the incubators at the UGA Poultry
Research Center. Thus, hatchability does not seem
to be a significant factor when considering the use
of EO water for sanitising hatching eggs during the
hatching process.
The researchers observed in these studies that electrostatic application of EO water completely removed the dust,
fluff and dander from the air, upper surfaces of the
hatching cabinet, and the eggs. It is believed that, by
charging the EO water using electrostatic spraying,
the dust and dander were also charged and fell to
the floor, away from the eggs and chicks.
Results for
Salmonella typhimurium
prevalence in the
lower intestines of broiler chickens from hatching
eggs treated electrostatically with tap water or EO
water during hatch are presented in Table 6. These
results are extremely encouraging in that 65 to 95
per cent (Replicate 1 and 2, respectively) of the chickens were colonised when only tap water was used to treat the fertile hatching eggs, indicating that the method for inducing colonisation was appropriate; however, for electrostatically treated eggs using EO water, Salmonella was only able to colonise one chicken out of 40 tested over two repetitions under actual grow-out conditions.
This research has tremendous industrial application because many of the companies that are experiencing failures due to high Salmonella prevalence at the poultry plant are receiving flocks of birds that are 80 to 100 per cent positive for Salmonella
as they enter the plant. It would seem logical to suppose that if the number of chickens in field that are colonised with Salmonella
could be reduced to the levels observed in this study, the industry would be able to meet the Salmonella performance standard required
by the USDA-FSIS.
This research describes a method that should have tremendous value to the poultry industry for reducing Salmonella in flocks arriving to
the processing plant, which, according to our research, will translate directly into lower numbers of processed carcasses that are positive for Salmonella. Moreover, the electrostatic spraying system is not expensive to incorporate into a commercial hatchery.
Additionally, the EO water is very economical to produce and is so non-toxic as to be potable. This water does not degrade equipment and does not present an environmental hazard when discharged.
Summary
Electrolysed oxidative water applied using electrostatic spraying is an effective means of eliminating
pathogenic and indicator populations of bacteria
from hatching eggs. Using this method in a pilot
scale hatchery, the percentage of chickens that were
colonised with
Salmonella
was dramatically reduced.
These studies demonstrate that the use of EO water in combination with electrostatic spraying may
provide a practical and inexpensive way for the
industry to significantly lower the number of birds
that arrive at the processing plant contaminated with Salmonella.
References
Bailey, J.S., R.J. Buhr, N.A. Cox, and M.E. Berrang. 1996. Effect of hatching cabinet sanitation treatments on Salmonella cross-contamination and hatchability of broiler eggs. Poult. Sci. 75:191-196. Brake, J., and B.W. Sheldon. 1990. Effect of a quaternary ammonium sanitiser for hatching eggs on their contamination, permeability, water loss, and hatchability. Cason, J.A., J.S. Bailey, and N.A. Cox. 1993. Location of Salmonella typhimurium during incubation and hatching of inoculated eggs. Poult.Sci. 72:2064-2068. Cason, J.A., J.S. Bailey and N.A. Cox. 1994. Transmission of Salmonella typhimurium during hatching of broiler chicks. Avian Dis. 38:583-588. Cox, N.A., M.E. Berrang and J.A. Cason. 2000. Salmonella penetration of egg shells and proliferation in broiler hatching eggs - A review. Poult. Sci. 79:1571-1574. Cox, N.A., J.S. Bailey, J.M. Mauldin and L.C. Blankenship. 1990. Research note: Presence and impact of Salmonella contamination in commercial broiler hatcheries. Poultry Sci. 69:1606-1609. Cox, N.A., J.S. Bailey, J.M. Mauldin, L.C. Blankenship and J.L. Wilson. 1991. Research note: Extent of salmonellae contamination in breeder hatcheries. Poultry Sci. 70:416-418. Goren, E., W.A. de Jong, P. Doornenbal, N.M. Bolder, R.W. Mulder and A. Jansen. 1988. Reduction of Salmonella infection of broilers by spray application of intestinal microflora: A longitudinal study. Vet. Q. 10:249-255. Herzog, G.A., S.E. Law, W.R. Lambert, W.E. Seigler and D.K. Giles. 1983. Evaluation of an electrostatic spray application system for control of insect pests in cotton. J. Econ. Entomol. 76:637-640. Law, S.E. 1978. Embedded-electrode electrostatic induction spray charging nozzle: theoretical and engineering design. Transact. of the ASAE 12:1096-1104. Law, S.E. and M.D. Lane. 1981. Electrostatic deposition of pesticide spray onto foliar targets of varying morphology. Transact. of the ASAE 24:1441-1448. Muira, S., G. Sato and T. Miyamae. 1964. Occurrence and survival of Salmonella organisms in hatcher chick fluff in commercial hatcheries. Avian Dis. 8:546-554. Sander, J.E. and J.L. Wilson. 1999. Effect of hydrogen peroxide disinfection during incubation of chicken eggs on microbial levels and productivity. Avian Dis. 43:227-233. Sheldon, B.W. and J. Brake. 1991. Hydrogen peroxide as an alternative hatching egg disinfectant. Poult. Sci. 70:1092-1098. Whistler, P.E. and B.W. Sheldon. 1989. Bacteriocidal activity, eggshell conductance, and hatchability effects of ozone versus formaldehyde disinfection. Poult. Sci. 68:1074-1077.March 2013