Risk Factors Associated with Clostridial Dermatitis on US Turkey-Grower Farms
High environmental humidity and alkaline soil contribute to clostridial dermatitis, according to a new study from the USDA Animal and Plant Health Inspection Service (APHIS). It also found two measures that might help control the disease: footwear scrubbing by employees and keeping litter composting sheds more than 200 feet from poultry barns.Introduction
A disease of turkeys and broilers, clostridial dermatitis
(cellulitis/gangrenous dermatitis) has become an issue of
concern in recent years. In 2010, the US Animal
Health Association (USAHA) ranked clostridial dermatitis
among the top three disease issues in turkeys (USAHA,
2010). The disease causes mortality with necrosis,
edema, and/or gas in the subcutaneous tissues, and
most often affects toms between 13 and 18 weeks old.
In December 2008, a Gold Medal Panel of industry
experts was assembled to identify research needs and
discuss clostridial dermatitis. Several measures to
control or stop the disease were discussed:
- removing dead birds from barns at least two to three times per day
- keeping litter dry
- feeding probiotics/direct-fed microbials
- barn clean-out including litter removal after an affected flock
- acidifying litter
- acidifying birds' drinking water
- adding iodine to birds' drinking water
- in-barn composting of litter between flocks (windrow composting)
- minimizing bird stress
- adding extra vitamin E to feed, and
- increasing barn space allocated for birds (decreased stocking density) (Clark, 2010).
Most of these measures are aimed at decreasing the bacterial load in the barn and/or changing environmental conditions to be less favourable for clostridial growth.
Methodology
The US Department of Agriculture's National
Animal Health Monitoring System (NAHMS) conducted a
study to determine risk factors associated with clostridial
dermatitis on US turkey farms. For the study, 15 of the
nation's largest turkey companies were selected to
participate. The selected companies represented 76.8
per cent of turkeys slaughtered in the United States in
2009 (Watt, 2010). Ten of the 15 selected companies
agreed to participate in the study.
Participating companies selected case and control
farms based on the following definitions provided by
NAHMS:
- Case farm: farm in which at least two-thirds of flocks placed were affected with clostridial dermatitis during the previous 12 months. An affected flock was one in which mortality due to clostridial dermatitis was greater than 0.5 per 1,000 birds for two consecutive days.
- Control farm: farm with little or no problem with clostridial dermatitis during the previous 12 months.
Questionnaires were completed for 36 case farms and 35 control farms between 3 June and 17 December 2010. Questionnaire data were analyzed to look for statistical associations between farm status (case vs. control) and farm characteristics, such as management practices.
Results
Risk factors found to be associated (p-value <0.05) with clostridial dermatitis included:
- composting litter within 200 feet of a poultry barn
- soil pH immediately outside of barn of 6.0 or higher, and
- humidity level 60 percent or higher in the barn (figure 1, table 1).
In addition, requiring employees to scrub footwear was associated with a reduced risk of clostridial dermatitis. The questionnaire did not collect information on in-barn windrow composting of litter, only on litter composting that occurred in a location outside the poultry barns.
Percentage of case farms and control farms with the following characteristics
Results of logistic regression for factors associated with being a clostridial dermatitis case farm | ||
---|---|---|
Factor | Odds ratio | p-value |
Litter composted within 200 ft of poultry barn1 | 8.3 | 0.01 |
Employees required to scrub footwear (bucket and brush)1 | 0.09 | 0.0004 |
Soil pH >6.02 | 17.5 | 0.02 |
Humidity >60 percent2 | 11.6 | 0.02 |
1Adjusted for region. 2Adjusted for region and season. |
Case farms were less likely to require employees to
scrub footwear compared with control farms (OR=0.09;
table 1). This finding suggests that clostridial organisms
from other locations on the farm might be transported
and introduced to the poultry barn by employee
footwear. Most of the farms that did not require
employees to scrub footwear used a different footwear
precaution, such as dry or liquid footbaths. Scrubbing
footwear with a bucket and brush, and thereby reducing
microbial contamination from boots, might be more
effective than dry or wet footbaths. Based on this study,
scrubbing footwear is recommended to help prevent or
control clostridial dermatitis.
Litter management is thought to be an important
component of clostridial dermatitis control. This study
found that case farms were more likely than control
farms to compost litter within 200 feet of poultry barns (OR=8.3; table 1). Control farms were more likely to
compost litter more than 200 feet from poultry barns or
not compost litter at all. The proximity of the composting
shed to the poultry barns was the important factor, not
whether litter was composted on site.
It is unclear why having a composting shed in close
proximity to the poultry barns is associated with being a
case farm. Clostridium septicum is thought to be the
principal cause of clostridial dermatitis (Tellez, 2009).
Litter from an affected flock is likely to have a high
number of C. septicum spores. Some farms also
compost dead birds along with litter, which may increase
the clostridial load. In theory, C. septicum could be
carried mechanically from the composting shed to the
poultry barns by people, rodents or insects. Airborne
spread of some clostridial species has also been
reported (Pillai et al., 1996; Chai et al, 1997; Best et al.,
2010; Keessen et al., 2011). C. septicum could be
disseminated by airborne routes as well, but further
research is needed to determine how far spores can
travel when airborne.
Case farms had significantly higher humidity levels
in the poultry barns and higher soil pH than control farms
(Figure 1). Perhaps the association between high
humidity and clostridial dermatitis is related to increased
litter moisture. However, litter moisture was not
measured in this study. Higher soil pH (?6) may be
favorable to clostridial organisms since they prefer a pH
of 6 to 7 for optimal growth and toxin production.
Certain factors believed to be important to clostridial
dermatitis control were not found to have a statistically
significant association with farm status (case vs. control)
in this study. For example, the following variables were
analyzed but not found to be statistically significant:
- frequency of mortality removal
- use of a cull pen
- barn clean-out practices
- litter tilling, and
- dead bird disposal by composting.
If case farms changed their practices in response to
disease, this may have affected the study’s ability to
detect an association between the practice and being a
case farm. Therefore, the study findings did not refute
the importance of these practices for the control or
prevention of clostridial dermatitis. A prospective study
or a clinical trial could be used to further analyze these
practices. However, clinical trials are costly and time
consuming.
To investigate further risk factors for clostridial
dermatitis, another analysis was performed using the
last completed flock on each of the 36 case farms. This
analysis compared flocks that had mild or minimal
clostridial dermatitis with flocks with moderate or severe
clostridial dermatitis, to evaluate interventions used on
case farms. The following definitions for the severity of
clostridial dermatitis were used:
- mild = not treated
- minimal = treated once and responded
- moderate = multiple or continuous treatment, responded
- severe = no or poor response to treatment
Due to the small sample size, and because three-quarters
of case farms had a moderate to severe
clostridial dermatitis problem, establishing reliable
statistical associations was not possible. However, a few
variables were interesting numerically: water
acidification, use of direct-fed microbials, and use of
ionophores.
A lower percentage of moderately to severely
affected flocks had received acidified water or direct-fed
microbials compared with mildly or minimally affected
flocks (figure 2). This finding is in agreement with the
belief that acidification may help control or prevent this
disease by creating conditions that are less favourable for
clostridial growth. Similarly, direct-fed microbials alter gut
flora and may cause a competitive inhibition of clostridial
growth in the gut.
In addition, an apparently lower percentage of
moderately to severely affected flocks than mildly or
minimally affected flocks had received ionophores. This
result was unexpected. The questionnaire did not collect
information on timing or duration of administration of
ionophores. These intervention strategies deserve
further investigation in future studies.
Percentage of case farms with the following characteristics, by severity of clostridial dermatitis in the last completed flock
Summary
The NAHMS study verified that high environmental
humidity and high soil pH contribute to clostridial
dermatitis and identified two measures that might aid in
the prevention or control of clostridial dermatitis:
footwear scrubbing by employees and keeping litter
composting sheds more than 200 feet from poultry
barns.
Water acidification and administering direct-fed
microbials or ionophores may be effective in reducing
the severity of clostridial dermatitis on affected farms,
but further research is needed in this area.
References
Best E.L., Fawley W.N., Parnell P. and Wilcox M.H.. 2010. The potential for
airborne dispersal of Clostridium difficile from symptomatic patients.
Clin Infect Dis., 50(11):1450–1457.
Chai T., Müller W. and Zucker B.A. 1997. Airborne microorganisms in animal
stables. 1. Anaerobic airborne bacteria in a calf stable with special
regard to Clostridium perfringens. Berl Munch Tierarztl Wochenschr., 110(1):1–4.
Clark S., Porter R., McComb B., Lippert R., Olson S., Nohner S. and Shivaprasad H.L. 2010. Clostridial dermatitis and cellulitis: an emerging
disease of turkeys. Avian Dis., 54(2):788–794.
Keessen E.C., Donswijk C.J., Hol S.P., Hermanus C., Kuijper E.J. and Lipman L.J. 2011. Aerial dissemination of Clostridium difficile on a pig farm and its environment. Environ Res., 111(8):1027–1032.
Pillai S.D., Widmer K.W., Dowd S.E. and Ricke S.C. 1996. Occurrence of
airborne bacteria and pathogen indicators during land application of
sewage sludge. Appl Environ Microbiol., 62(1):296–299.
Tellez G., Pumford N.R., Morgan M.J., Wolfenden A.D. and Hargis B.M. 2009.
Evidence for Clostridium septicum as a primary cause of cellulitis in
commercial turkeys. J Vet Diagn Invest 21:374–377.