ShapeShapeauthorShapechevroncrossShapeShapeShapeGrouphamburgerhomeGroupmagnifyShapeShapeShaperssShape

UCR Biochemist Goes to Washington with High-Protein Corn

by 5m Editor
20 September 2005, at 12:00am

CALIFORNIA - Daniel Gallie’s findings propose a useful approach to feed the world’s growing population. Corn with twice its usual content of protein and oil and about half its usual carbohydrate content is what Daniel Gallie, professor of biochemistry, will present at a congressional seminar in Washington, D.C., this week.

UCR Biochemist Goes to Washington with High-Protein Corn - CALIFORNIA - Daniel Gallie’s findings propose a useful approach to feed the world’s growing population. Corn with twice its usual content of protein and oil and about half its usual carbohydrate content is what Daniel Gallie, professor of biochemistry, will present at a congressional seminar in Washington, D.C., this week.

Daniel Gallie, professor of biochemistry, will present his research on high-protein corn before a congressional committee in Washington, D.C., Sept. 23.

Because his research holds promise for efficiently feeding high-protein corn to people and livestock all over the world, Gallie has been invited to speak to an audience of congressional staff in the Longworth House Office Building of the U.S. House of Representatives. His 45-minute presentation is scheduled for 10 a.m., Sept. 23.

The National Coalition for Food and Agricultural Research, a broad-based coalition of agricultural producers, science societies and universities, is sponsoring the seminar.

In the United States, the vast majority of corn – nearly 65 percent – is used to feed animals for meat production. Much of the remainder is exported to other countries for feeding animals or made into corn sweeteners or fuel alcohol. Corn, the most widely produced feed grain in the United States, accounts for more than 90 percent of total value and production of feed grains in the country, with around 80 million acres of land planted with corn.

Gallie’s research on doubling the protein content of corn grain adds significant value to the crop, benefiting corn producers. Moreover, his technology nearly doubles corn oil, the most valuable content of corn grain, and significantly increases the grain’s value. Corn is processed also into other food and industrial products such as starch, sweeteners, beverage and industrial alcohol, and fuel ethanol.

“Nearly 800 million people in the world suffer from protein-energy malnutrition, which is a leading cause of death in children in developing countries, many of which already produce corn as a major cereal crop,” said Gallie. “A significant fraction of the world’s population, particularly in developing countries, has no access to meat as a protein source, and has to rely on plant sources such as grain. The new corn we have developed has two embryos in its kernel, which is what doubles the content of protein and oil and reduces the starch content. It could provide a good source of protein for those that depend on grain as their primary source of nutrients.”

Every corn kernel results from a flower on an ear of corn, Gallie explained. Initially the ear produces a pair of flowers for every kernel. But then one of the sister flowers undergoes abortion, resulting in one flower for each kernel. Gallie’s research group has developed technology that essentially rescues the aborted flower, resulting in two kernels that are fused together. “Despite the fusion, the kernels are not bigger,” Gallie said. “It’s basically the same corn, except that it is protein-rich and starch-poor – something that, if applied to sweet corn, would appeal to a large number of weight-conscious people in this country who are interested in low-carb diets and who normally avoid corn in their diets.”

Gallie and his colleagues published their work last year in The Plant Journal. Though their research focused on feed corn, the technology can easily be applied to sweet corn, a sugar-rich mutant strain of regular corn.

The U.S. Department of Agriculture, the National Science Foundation, and the California Agricultural Experiment Station funded the research.

Source: University of California - 20th September 2005

5m Editor